若是數(shù)列{an}的前n項和,且=            .

 

【答案】

 33   

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•bx的圖象過點A(4、
14
)和B(5,1).
(1)求函數(shù)f(x)的解析式;
(2)記an=log2f(n)、n是正整數(shù),Sn是數(shù)列{an}的前n項和,解關(guān)于n的不等式anSn≤0;
(3)對于(2)中的an與Sn,整數(shù)104是否為數(shù)列{anSn}中的項?若是,則求出相應的項數(shù);若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N* ).
(1)判斷數(shù)列{
an+2
2n+1
}
是否為等比數(shù)列?若不是,請說明理由;若是,試求出通項an;.
(2)如果a=1時,數(shù)列{an}的前n項和為Sn,試求出Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項積為Tn,已知對?n,m∈N+,當n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設正整數(shù)k,m,n(k<m<n)成等差數(shù)列,試比較Tn•Tk和(Tm2的大小,并說明理由;
(3)探究:命題p:“對?n,m∈N+,當n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù))”是命題t:“數(shù)列{an}是公比為q(q>0)的等比數(shù)列”的充要條件嗎?若是,請給出證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•深圳二模)已知數(shù)列{an}滿足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)試判斷數(shù)列{
an+2
2n+1
}
是否為等比數(shù)列?若不是,請說明理由;若是,試求出通項an
(Ⅱ)如果a=1時,數(shù)列{an}的前n項和為Sn.試求出Sn,并證明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).

查看答案和解析>>

同步練習冊答案