用數(shù)學(xué)歸納法證明等式:

對于一切都成立.

 

【答案】

利用數(shù)學(xué)歸納法。

【解析】

試題分析:(1)當(dāng)n=1時,左邊= ,右邊=,等式成立。

(2)假設(shè)n=k時,等式成立,即=

那么n=k+1時,……

=

=

這就是說,當(dāng)n=k+1時 等式也成了

故對一切等式都成立。

考點:本題主要考查數(shù)學(xué)歸納法。

點評:容易題,利用數(shù)學(xué)歸納法,可證明與自然數(shù)有關(guān)的命題,證明過程中,要注意規(guī)范寫出“兩步一結(jié)”。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
對一切自然數(shù)n都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N*)
時,第一步驗證n=1時,左邊應(yīng)取的項是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,當(dāng)n=1左邊所得的項是1+2+3;從“k→k+1”需增添的項是
(2k+2)+(2k+3)
(2k+2)+(2k+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)一模)用數(shù)學(xué)歸納法證明等式:1+a+a2+…+an+1=
1-an+21-a
(a≠1,n∈N*),驗證n=1時,等式左邊=
1+a+a2
1+a+a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的過程中,由n=k遞推到n=k+1時不等式左邊(  )

查看答案和解析>>

同步練習(xí)冊答案