分析 (Ⅰ)由題意利用斜率公式可得函數(shù)f(x)的解析式,求出導(dǎo)函數(shù)分別由導(dǎo)函數(shù)大于0和小于0求出原函數(shù)的單調(diào)區(qū)間,進(jìn)一步求得極值;
(Ⅱ)把f(x)的解析式代入g(x)=$\frac{x}{a(1-x)}$[xf(x)-1],分析可知,若a<0,當(dāng)x∈(0,1)時(shí),f(x)>0與題意不符.可得a>0.由g(x)>-1,得$\frac{xlnx}{a(1-x)}>-1⇒lnx+\frac{a(1-x)}{x}>0$,構(gòu)造函數(shù)$h(x)=lnx+\frac{a(1-x)}{x}=lnx+\frac{a}{x}-a,x∈(0,1)$,求其導(dǎo)函數(shù),然后對(duì)a分類分析得答案.
解答 解:(Ⅰ)依題意,P(x,1+lnx),則$f(x)=\frac{1+lnx}{x}$,x>0,
于是,$f'(x)=-\frac{lnx}{x^2}$,
當(dāng)0<x<1時(shí),f′(x)>0;當(dāng)x>1時(shí),f′(x)<0.
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
故f(x)在x=1處取得極大值,且極大值為f(1)=1;無(wú)極小值.
(Ⅱ)$g(x)=\frac{x}{a(1-x)}[{xf(x)-1}]=\frac{xlnx}{a(1-x)}$,
可知,若a<0,∵x∈(0,1),∴f(x)>0與題意不符.則a>0.
由g(x)>-1,得$\frac{xlnx}{a(1-x)}>-1⇒lnx+\frac{a(1-x)}{x}>0$,
記$h(x)=lnx+\frac{a(1-x)}{x}=lnx+\frac{a}{x}-a,x∈(0,1)$,$h'(x)=\frac{1}{x}-\frac{a}{x^2}=\frac{x-a}{x^2}$.
①若a≥1,則h'(x)<0恒成立,從而h(x)在(0,1)上遞減,h(x)>h(1)=0,滿足題意;
②若0<a<1,則當(dāng)x∈(0,a)時(shí),h'(x)<0;x∈(a,1)時(shí),h'(x)>0,
∴h(x)在(0,a)上遞減,在(a,1)上遞增.
∴x∈(a,1)時(shí),h(x)<h(1)=0,不滿足題意.
綜上,a的取值范圍是[1,+∞).
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求函數(shù)的極值,訓(xùn)練了恒成立問(wèn)題的求解方法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,屬難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≤5 | B. | a<5 | C. | a≤1 | D. | a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com