【題目】已知橢圓 的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線 相切.
(1)求橢圓的方程;
(2)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接PB交橢圓C于另一點(diǎn)E,證明直線AE與x軸相交于點(diǎn)Q(1,0).
【答案】
(1)解:∵橢圓 的離心率為 ,∴
∴
∵橢圓的短半軸為半徑的圓與直線 相切.
∴b=
∴a2=4,b2=3
∴橢圓的方程為 ;
(2)解:由題意知直線PB的斜率存在,設(shè)方程為y=k(x﹣4)代入橢圓方程可得(4k2+3)x2﹣32k2x+64k2﹣12=0
設(shè)B(x1,y1),E(x2,y2),則A(x1,﹣y1),
∴x1+x2= ,x1x2=
又直線AE的方程為y﹣y2=
令y=0,則x=x2﹣ =x2﹣ = =1
∴直線AE過x軸上一定點(diǎn)Q(1,0)
【解析】(1)根據(jù)橢圓 的離心率為 ,可得 ,利用橢圓的短半軸為半徑的圓與直線 相切,可得b= ,從而可求橢圓的方程(2)由題意知直線PB的斜率存在,設(shè)方程為y=k(x﹣4)代入橢圓方程,利用韋達(dá)定理,表示出直線AE的方程,令y=0,化簡(jiǎn)即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí), f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點(diǎn)之和為( )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與拋物線y2=2x相交于A(x1 , y1),B(x2 , y2)兩點(diǎn),與x軸相交于點(diǎn)M,若y1y2=﹣4,
(1)求:M點(diǎn)的坐標(biāo);
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,點(diǎn)E是棱PA的中點(diǎn),PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求證:PC⊥平面ABCD;
(Ⅲ)設(shè)PC=λAB,試判斷平面PAD⊥平面PAB能否成立;若成立,寫出λ的一個(gè)值(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的平行六面體ABCD﹣A1B1C1D中,AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,則CA1的長(zhǎng)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣x
(1)求f(x)的解析式;
(2)畫出f(x)的圖象;
(3)若方程f(x)=k有4個(gè)解,根據(jù)函數(shù)圖象求k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,已知第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(3)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?請(qǐng)說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com