分析:對于(Ⅰ)首先由數列{a
n}的前n項的和求首項a
1與通項a
n,可先求出S
n-1,然后有a
n=S
n-S
n-1,公比為4的等比數列,從而求解;
對于(Ⅱ)已知
Tn=,n=1,2,3,…,將a
n=4
n-2
n代入S
n=
a
n-
×2
n+1+
,n=1,2,3,得S
n=
×(4
n-2
n)-
×2
n+1+
=
×(2
n+1-1)(2
n+1-2)
然后再利用求和公式進行求解.
解答:解:(Ⅰ)由S
n=
a
n-
×2
n+1+
,n=1,2,3,①得a
1=S
1=
a
1-
×4+
所以a
1=2.
再由①有S
n-1=
a
n-1-
×2
n+
,n=2,3,4,
將①和②相減得:a
n=S
n-S
n-1=
(a
n-a
n-1)-
×(2
n+1-2
n),n=2,3,
整理得:a
n+2
n=4(a
n-1+2
n-1),n=2,3,
因而數列{a
n+2
n}是首項為a1+2=4,公比為4的等比數列,即:a
n+2
n=4×4
n-1=4
n,n=1,2,3,
因而a
n=4
n-2
n,n=1,2,3,
(Ⅱ)將a
n=4
n-2
n代入①得S
n=
×(4
n-2
n)-
×2
n+1+
=
×(2
n+1-1)(2
n+1-2)
=
×(2
n+1-1)(2
n-1)
T
n=
=
×
=
×(
-
)
所以,
n |
|
i=1 |
Ti=
n |
|
i=1 |
(-
)=
×(
-
)<
點評:此題主要考查數列的遞推式和數列的求和,難度比較大,做題要仔細.