9.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+時(shí),fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

分析 觀察所給的前四項(xiàng)的結(jié)構(gòu)特點(diǎn),先觀察分子,只有一項(xiàng)組成,并且沒(méi)有變化,在觀察分母,有兩部分組成,是一個(gè)一次函數(shù),根據(jù)一次函數(shù)的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)的變化特點(diǎn),得到結(jié)果.

解答 解:由題意,所給的函數(shù)式的分子不變都是x,而分母是由兩部分的和組成,
第一部分的系數(shù)分別是1,3,7,15…2n-1,第二部分的數(shù)分別是2,4,8,16…2n
∴fn(x)=f(fn-1(x))=$\frac{x}{({2}^{n}-1)x+{2}^{n}}$,
∴fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.
故答案為$\frac{1}{{{2^{n+1}}-1}}$.

點(diǎn)評(píng) 本題考查歸納推理,實(shí)際上本題考查的重點(diǎn)是給出一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的通項(xiàng)公式,本題是一個(gè)綜合題目,知識(shí)點(diǎn)結(jié)合的比較巧妙.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-4lnx$
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)M為△ABC內(nèi)一點(diǎn),且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,則△ABM與△ABC的面積之比為( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若直線(xiàn)y=x+t與橢圓$\frac{x^2}{4}+{y^2}=1$相交于A,B兩點(diǎn),當(dāng)|t|變化時(shí),|AB|的最大值為( 。
A.2B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{4\sqrt{10}}}{5}$D.$\frac{{8\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)=ax3,g(x)=9x2+3x-1,當(dāng)x∈[1,2]時(shí),f(x)≥g(x)恒成立,則a的取值范圍是(  )
A.a≤$\frac{41}{8}$B.a≤11C.a≥$\frac{41}{8}$D.a≥11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的通項(xiàng)公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=$\frac{1}{2},q=-\frac{2}{3}$,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得bm=4m+1(m∈N*)?如果存在,求p和q的取值范圍;如不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若關(guān)于x的函數(shù)f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$(t>0)的最大值為M,最小值為N,且M+N=6,則實(shí)數(shù)t的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知AB是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸,若把該長(zhǎng)軸2010等分,過(guò)每個(gè)等分點(diǎn)作AB的垂線(xiàn),依次交橢圓的上半部分于點(diǎn)P1,P2,…,P2009,設(shè)左焦點(diǎn)為F1,則$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=ln(x+1)-x的單調(diào)遞減區(qū)間為(0,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案