(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且,求橢圓C2的方程;
(3)對(duì)拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對(duì)C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進(jìn)行下去,對(duì)拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數(shù)列{pn}的通項(xiàng)公式pn
【答案】分析:(1)由“伸縮變換”的伸縮比得,從而即得曲線C2的方程;
(2)根據(jù)C2、C1關(guān)于原點(diǎn)“伸縮變換”,對(duì)C1作變換(x,y)→(λx,λy)(λ>0),得到C2分別解方程組得點(diǎn)A,B兩點(diǎn)的坐標(biāo),最后利用兩點(diǎn)的距離公式得到關(guān)于λ的方程求出λ的值,即可寫出橢圓C2的方程;
(3)先對(duì)Cn:y2=2pnx作變換(x,y)→(λnx,λny)得拋物線Cn+1:(λny)2=2pnλnx,結(jié)合y2=2pn+1x得到:,從而求得數(shù)列{pn}的通項(xiàng)公式pn
解答:解(1)由條件得,得C2;(4分)
(2)∵C2、C1關(guān)于原點(diǎn)“伸縮變換”,對(duì)C1作變換(x,y)→(λx,λy)(λ>0),得到C2,(5分)
解方程組得點(diǎn)A的坐標(biāo)為;(7分)
解方程組得點(diǎn)B的坐標(biāo)為;(8分)
==,化簡(jiǎn)后得3λ2-8λ+4=0,解得,因此橢圓C2的方程為.(12分)(漏寫一個(gè)方程扣2分)
(3)(理)對(duì)Cn:y2=2pnx作變換(x,y)→(λnx,λny)得拋物線Cn+1:(λny)2=2pnλnx,得,
又∵y2=2pn+1x,∴,即,(14分)
=2•22•23•…•2n-1,則,(16分)
(或解:)p1=1,
.(18分)
點(diǎn)評(píng):本小題主要考查圓錐曲線的標(biāo)準(zhǔn)方程、圓錐曲線簡(jiǎn)單性質(zhì)、數(shù)列與解析幾何的綜合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年西城區(qū)抽樣理)(14分)

   已知f是直角坐標(biāo)平面xOy到自身的一個(gè)映射,點(diǎn)在映射f下的象為點(diǎn),記作.

設(shè),,. 如果存在一個(gè)圓,使所有的點(diǎn)都在這個(gè)圓內(nèi)或圓上,那么稱這個(gè)圓為點(diǎn)的一個(gè)收斂圓. 特別地,當(dāng)時(shí),則稱點(diǎn)為映射f下的不動(dòng)點(diǎn).

    (Ⅰ) 若點(diǎn)在映射f下的象為點(diǎn).

  1 求映射f下不動(dòng)點(diǎn)的坐標(biāo);

  2 若的坐標(biāo)為(1,2),判斷點(diǎn)是否存在一個(gè)半徑為3的收斂圓,并說(shuō)明理由.

(Ⅱ) 若點(diǎn)在映射f下的象為點(diǎn),(2,3). 求證:點(diǎn)存在一個(gè)半徑為的收斂圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺理)(14分)

在直角坐標(biāo)平面xoy上的一列點(diǎn)簡(jiǎn)記為,若由構(gòu)成的數(shù)列滿足其中是y軸正方向相同的單位向量,則為T點(diǎn)列.

(1)判斷是否為T點(diǎn)列,并說(shuō)明理由;

(2)若為T點(diǎn)列,且點(diǎn)的右上方,任取其中連續(xù)三點(diǎn),判定的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;

(3)若為T點(diǎn)列,正整數(shù)滿足.求證:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年臺(tái)州市模擬理)  在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:

;②;③

(1)求的頂點(diǎn)的軌跡方程;

(2)過(guò)點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年聊城市四模理) (14分)  在直角坐標(biāo)平面上有一點(diǎn)列位于直線上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

   (1)求點(diǎn)Pn的坐標(biāo);

   (2)設(shè)拋物線列C1C2,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,第n條拋物線Cn的頂點(diǎn)為Pn,且經(jīng)過(guò)點(diǎn)Dn(0,n2+1). 記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求證:;

   (3)設(shè),等差數(shù)列{an}的任意一項(xiàng),其中a1ST中的最大數(shù),且-256<a10­<-125,求數(shù)列{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年福建卷理)對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn),定義它們之間的一種“距離”:              給出下列三個(gè)命題:

       ①若點(diǎn)C在線段AB上,則

       ②在中,若

       ③在中,

       其中真命題的個(gè)數(shù)為

       (A)0    (B)1   。–)2   。―)3

查看答案和解析>>

同步練習(xí)冊(cè)答案