已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平面ABCD,
F是線段BC的中點.H為PD中點.
(1)證明:FH∥面PAB;
(2)證明:PF⊥FD.
解:(1)取PA的中點G,連接GB,GH,
則∵底面ABCD是矩形,H為PD中點
∴GH∥BF,GH=BF
∴四邊形BFHG是平行四邊形
∴FH∥BG
∵FH面PAB,BG面PAB
∴FH∥面PAB;
(2)連接AF,則AF=,DF=
∵AD=2a,∴DF2+AF2=AD2,
∴DF⊥AF∵PA⊥平面ABCD,
∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
∴PF平面PAF,∴DF⊥PF
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點.H為PD中點.
(1)證明:FH∥面PAB;
(2)證明:PF⊥FD;
(3)若PB與平米ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點.H為PD中點.
(1)證明:FH∥面PAB;
(2)證明:PF⊥FD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<
π2
),則四棱錐P-ABCD的體積V的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊二模)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:DF⊥平面PAF;
(2)在線段AP上取點G使AG=
14
AP,求證:EG∥平面PFD.

查看答案和解析>>

同步練習(xí)冊答案