【題目】某校課改實(shí)行選修走班制,現(xiàn)有甲,乙,丙,丁四位學(xué)生準(zhǔn)備選修物理,化學(xué),生物三個(gè)科目.每位學(xué)生只選修一個(gè)科目,且選修其中任何一個(gè)科目是等可能的.
(1)恰有2人選修物理的概率;
(2)選修科目個(gè)數(shù)ξ的分布列及期望.
【答案】
(1)解:甲,乙,丙,丁四位學(xué)生準(zhǔn)備選修物理,化學(xué),生物三個(gè)科目.每位學(xué)生只選修一個(gè)科目,且選修其中任何一個(gè)科目是等可能的,
∴基本事件總數(shù)n=34,
恰有2人選修物理包含的基本事件個(gè)數(shù)m= ,
∴恰有2人選修物理的概率p= = =
(2)解:由題意得ξ的所有可能取值為1,2,3,
P(ξ=1)= = ,
P(ξ=2)= = ,
P(ξ=3)= = ,
∴ξ的分布列為:
ξ | 1 | 2 | 3 |
P |
Eξ= =
【解析】(1)先求出基本事件總數(shù),再求出恰有2人選修物理包含的基本事件個(gè)數(shù),由此能求出恰有2人選修物理的概率.(2)由題意得ξ的所有可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,已知a1=1, ,
(1)求證數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若對(duì)一切n∈N* , 等式a1b1+a2b2+a3b3+…+anbn=2n恒成立,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象在點(diǎn)處的切線方程為.
(Ⅰ)求實(shí)數(shù)、的值;
(Ⅱ)求函數(shù)在區(qū)間上的最大值;
(Ⅲ)曲線上存在兩點(diǎn)、,使得是以坐標(biāo)原點(diǎn)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1: 的焦點(diǎn),且拋物線C1上點(diǎn)M處的切線與圓C2: 相切于點(diǎn)Q.
(Ⅰ)當(dāng)直線MQ的方程為時(shí),求拋物線C1的方程;
(Ⅱ)當(dāng)正數(shù)p變化時(shí),記S1 ,S2分別為△FMQ,△FOQ的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示
(1)求函數(shù)f(x)的解析式;
(2)分析該函數(shù)是如何通過(guò)y=sinx變換得來(lái)的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=cos(x+φ)的圖象上每點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個(gè)單位長(zhǎng)度后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則下列直線中是函數(shù)f(x)圖象的對(duì)稱軸的是( )
A.x=﹣
B.x=
C.x=﹣
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率 ,左右焦點(diǎn)分別為 是橢圓在第一象限上的一個(gè)動(dòng)點(diǎn),圓 與 的延長(zhǎng)線, 的延長(zhǎng)線以及線段 都相切, 為一個(gè)切點(diǎn).
(1)求橢圓方程;
(2)設(shè) ,過(guò) 且不垂直于坐標(biāo)軸的動(dòng)點(diǎn)直線 交橢圓于 兩點(diǎn),若以 為鄰邊的平行四邊形是菱形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,圓的參數(shù)方程為(為參數(shù)),(1)直線過(guò)且與圓相切,求直線的極坐標(biāo)方程;(2)過(guò)點(diǎn)且斜率為的直線與圓交于, 兩點(diǎn),若,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】右面莖葉圖表示的是甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損.則甲的平均成績(jī)超過(guò)乙的平均成績(jī)的概率為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com