分析 設三邊法不為a,b,c,c為斜邊,則c2=a2+b2.由a+b+c=1,可得a2+b2=(1-a-b)2,化為:1-2a-2b+2ab=0,變形1+2ab=2(a+b),再利用基本不等式的性質(zhì)與三角形面積計算公式即可得出.
解答 解:設三邊為a,b,c,c為斜邊,則c2=a2+b2.
∵a+b+c=1,
∴a2+b2=(1-a-b)2,化為:
1-2a-2b+2ab=0,
∴1+2ab=2(a+b)≥4$\sqrt{ab}$,化為:$2(\sqrt{ab})^{2}$-4$\sqrt{ab}$+1≥0,解得$\sqrt{ab}$≥$\frac{2+\sqrt{2}}{2}$,(舍去),
或$\sqrt{ab}$≤$\frac{2-\sqrt{2}}{2}$,即ab≤$(\frac{2-\sqrt{2}}{2})^{2}$=$\frac{3-2\sqrt{2}}{2}$.當且僅當a=b=$\frac{2-\sqrt{2}}{2}$時取等號.
∴它的面積最大值=$\frac{1}{2}$ab=$\frac{3-2\sqrt{2}}{4}$.
故答案為:$\frac{3-2\sqrt{2}}{4}$.
點評 本題考查了基本不等式的性質(zhì)與三角形面積計算公式、勾股定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-∞,-\sqrt{2})$ | B. | $(-∞,-\frac{{\sqrt{2}}}{2})$ | C. | $(-\sqrt{2},\frac{{\sqrt{2}}}{2})$ | D. | $(-∞,\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x-1)2+(y+4)2=2 | B. | (x+1)2+(y-4)2=2 | C. | (x-1)2+(y-4)2=2 | D. | (x+1)2+(y+4)2=2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=-\frac{1}{32}$ | B. | B | C. | C | D. | D |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12cm2 | B. | 15πcm2 | C. | 24πcm2 | D. | 36πcm2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈(0,+∞),等式lnx=a不成立 | B. | ?x∈(-∞,0),等式lnx=a不成立 | ||
C. | ?x0∈(0,+∞),等式lnx0=a不成立 | D. | ?x0∈(-∞,0),等式lnx0=a不成立 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com