如圖,已知橢圓
的中心在原點,其上、下頂點分別為
,點
在直線
上,點
到橢圓的左焦點的距離為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
是橢圓上異于
的任意一點,點
在
軸上的射影為
,
為
的中點,直線
交直線
于點
,
為
的中點,試探究:
在橢圓上運動時,直線
與圓
:
的位置關(guān)系,并證明你的結(jié)論.
試題分析:解(1)依題意有:
,
所以橢圓方程為
(2)
圓
:
在橢圓上運動時,直線
與圓
相切
證明:設(shè)
,
,則
點
在圓
上.
直線
方程為
令
,得
,
直線
與圓
相切。
點評:關(guān)于曲線的大題,第一個問題一般是讓我們求出曲線的方程,這個相對較容易,而第二個問題,常與直線結(jié)合在一起,當(dāng)曲線與直線相交時,在聯(lián)立方程組求交點過程中,常用到根與系數(shù)的關(guān)系式:
,(
)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
是橢圓
上的兩點,已知向量
,若
且橢圓的離心率
,短軸長為2,
O為坐標(biāo)原點.
(1)求橢圓的方程;
(2)試問△
AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
為拋物線
上一個動點,直線
:
,
:
,則
到直線
、
的距離之和的最小值為 ( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
與曲線
的交點個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
分別為雙曲線
的左右焦點,點P在雙曲線的右支上,且
,
到直線
的距離等于雙曲線的實軸長,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
曲線
都是以原點O為對稱中心、坐標(biāo)軸為對稱軸、離心率相等的橢圓.點M的坐標(biāo)是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(A在D的左側(cè)),與曲線
交于B,C兩點(B在C的左側(cè)).
(1)當(dāng)
=
,
時,求橢圓
的方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點
O和點
F分別為雙曲線
的中心和左焦點,點P為雙曲線右支上的任意一點,則
的最小值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
的離心率為
,右準(zhǔn)線方程為
。
(Ⅰ)求雙曲線
C的方程;
(Ⅱ)已知直線
與雙曲線
C交于不同的兩點
A,
B,且線段
AB的中點在圓
上,求實數(shù)
m的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若橢圓
的左、右焦點分別為F
1,F(xiàn)
2,橢圓的離心率為
:2.(1)過點C(-1,0)且以向量
為方向向量的直線
交橢圓于不同兩點A、B,若
,則當(dāng)△OAB的面積最大時,求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個動點,
,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.
查看答案和解析>>