已知集合M={-1,1,2,4},N={1,2,4},給出下列四個對應關系:①y=x2,②y=x+1,③y=x-1,④y=|x|,其中能構成從M到N的函數(shù)是( 。
分析:由函數(shù)的定義可知,要使應關系能構成從M到N的函數(shù),須滿足:對M中的任意一個數(shù),通過對應關系在N中都有唯一的數(shù)與之對應,據(jù)此逐項檢驗即可.
解答:解:對應關系若能構成從M到N的函數(shù),須滿足:對M中的任意一個數(shù),通過對應關系在N中都有唯一的數(shù)與之對應,
①中,當x=4時,y=42=16∉N,故①不能構成函數(shù);
②中,當x=-1時,y=-1+1=0∉N,故②不能構成函數(shù);
③中,當x=-1時,y=-1-1=-2∉N,故③不能構成函數(shù);
④中,當x=±1時,y=|x|=1∈N,當x=2時,y=|x|=2∈N,當x=4時,y=|x|=4∈N,故④能構成函數(shù);
故選D.
點評:本題考查函數(shù)的概念及其構成要素,屬基礎題,準確理解函數(shù)的概念是解決該題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1、已知集合M={1,2,3,5},集合N={3,4,5},則M∩N=
{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.設關于x的二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1時,從集合M取一個數(shù)作為a的值,求方程f(x)=0有解的概率;
(Ⅱ)若從集合M和N中各取一個數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,0,1,2},從集合M中有放回地任取兩元素作為點P的坐標.
(1)寫出這個試驗的所有基本事件,并求出基本事件的個數(shù);
(2)求點P落在坐標軸上的概率;
(3)求點P落在圓x2+y2=4內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},則集合M的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1},N={x|
1
4
2x-1<2,x∈Z}
,則M∩N=( 。

查看答案和解析>>

同步練習冊答案