f(x)=
x+a-1
x+2
在區(qū)間(-2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是______.
化簡(jiǎn)可得f(x)=
x+a-1
x+2
=
x+2+a-3
x+2
=1+
a-3
x+2

要使函數(shù)在區(qū)間(-2,+∞)上是增函數(shù),需使a-3<0,
解之可得a<3
故答案為:a<3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期中題 題型:填空題

下列說法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
其中所有正確說法的序號(hào)是(    )。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0119 期中題 題型:填空題

下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中所有正確命題的序號(hào)是(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案