曲線
x=1+t2
y=t-1
(t為參數(shù))與x軸交點(diǎn)的直角坐標(biāo)是
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:把曲線的參數(shù)方程為直角坐標(biāo)方程,再令y=0,求得x的值,可得曲線與x軸交點(diǎn)的直角坐標(biāo).
解答:解:把曲線
x=1+t2
y=t-1
(t為參數(shù))消去參數(shù),化為普通方程為 (y+1)2=x-1.
令y=0,求得x=2,故曲線與x軸交點(diǎn)的直角坐標(biāo)是(2,0),
故答案為:(2,0).
點(diǎn)評:本題主要考查把參數(shù)方程為直角坐標(biāo)方程的方法,求直線和坐標(biāo)軸的交點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,
x=1-3t
y=4-4t
(t為參數(shù)),則直線傾斜角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取相等的長度單位建立極坐標(biāo)系,若直線l:ρcos(θ+
π
4
)=
2
與曲線C1
x=4cosα
y=4sinα-3
(α為參數(shù))相交于A,B兩點(diǎn),則線段AB長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系下,直線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2cosθ
y=2+sinθ
,(θ為參數(shù)),若C1與C2有公共點(diǎn),則實(shí)數(shù)a的取值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=3+tsin20°
y=-1+tcos20°
(t為參數(shù))的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=2cosθ,則曲線C上的點(diǎn)到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極值為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:
x=m+t
y=t
,(t是參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,直線l的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),且|AB|=
14
,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)f(x)=,且y=f(x)的圖象過點(diǎn)和點(diǎn)

(1)求m,n的值;

(2)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)y=g(x)的圖象,若y=g(x)圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)遞增區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都實(shí)驗(yàn)外國語高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

在數(shù)列中,,

(1)求數(shù)列的通項(xiàng);

(2)若存在,使得成立,求實(shí)數(shù)的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案