正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是正方形ADD1A1和ABCD的中心,G是CC1的中點(diǎn),設(shè)GF,C1E與AB所成的角分別為α,β,則α+β=
90°
90°
分析:本題適合建立空間坐標(biāo)系得用向量法解決這個(gè)立體幾何問題,建立空間坐標(biāo)系,給出有關(guān)點(diǎn)的坐標(biāo),求出直線的GF、C1E與AB的方向向量,利用夾角公式求線線角的余弦值即可.
解答:解:建立坐標(biāo)系如圖,
B(2,0,0),A(2,2,0),G(0,0,1),F(xiàn)(1,1,0),C1(0,0,2),E(1,2,1).
BA
=(0,2,0),
GF
=(1,1,-1),
C1E
=(1,2,-1),
∴cos<
BA
,
GF
>=
BA
GF
|
BA
|×| 
GF
|
=
2
3
=
1
3

同理cos<
BA
,
C1E
>=
2
3
,
∴cosα=
1
3
,sinα=
2
3
,
cosβ=
2
3
,sinβ=
1
3
,
∴cos(α+β)=cosαcosβ-sinαsinβ=
1
3
2
3
-
2
3
1
3
=0
∴α+β=90°,
故答案為:90°.
點(diǎn)評:考查用空間向量為工具解決立體幾何問題,此類題關(guān)鍵是找清楚線的方向向量,最后利用夾角公式計(jì)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點(diǎn)均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個(gè)裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點(diǎn)P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點(diǎn)是P,過點(diǎn)A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點(diǎn),過A1,M,C三點(diǎn)的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習(xí)冊答案