橢圓的離心率是   
【答案】分析:將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程,即可求其離心率.
解答:解:∵,
+=cos2θ+sin2θ=1,
+=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),
∴其離心率e==
故答案為:
點評:本題考查橢圓的參數(shù)方程,考查橢圓的性質(zhì),屬于簡單題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
k+2
+
y2
k+1
=1的左右焦點,弦AB過F1,若△ABF2的周長為8,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓的兩個焦點,過F1且與橢圓長軸垂直的直線交橢圓于A,B兩點,若△ABF2是正三角形,則這個橢圓的離心率是(  )
A、
3
3
B、
2
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點且垂直于x軸的直線被橢圓截得的線段長為
1
2
a
,則該橢圓的離心率是( 。
A、
3
2
B、
3
4
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于不同的兩點M,N,過點M,N作x軸的垂線,垂足恰好是橢圓的兩個焦點,已知橢圓的離心率是
2
2
,直線l的斜率存在且不為0,那么直線l的斜率是
±
2
2
±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過F1且垂直于軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則橢圓的離心率是
3
3
3
3

查看答案和解析>>

同步練習(xí)冊答案