【題目】如圖,正方形ABCD與正方形BCEF所成角的二面角的平面角的大小是 ,PQ是正方形BDEF所在平面內(nèi)的一條動(dòng)直線,則直線BD與PQ所成角的取值范圍是(

A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]

【答案】B
【解析】解:以B為原點(diǎn),BC為x軸,BA為y軸,過B作平面ABCD的垂線為z軸,建立空間直角坐標(biāo)系,
設(shè)BC=1,則B(0,0,0),D(1,1,0),C(1,0,0),
E(1, , ),F(xiàn)(0, ),
當(dāng)D點(diǎn)在正方形BCEF的投影剛好落在CE上,記為G點(diǎn),其坐標(biāo)為G(1, ),
此時(shí)BG與BD所成角剛好30度,
即直線BD與PQ所成角的最小值為 ,
取P( ,0,0),Q(0, , )時(shí),直線BD于PQ所成角取最大值,
=(1,1,0), =(﹣ , ),
∴cos< >= =0,
∴直線BD于PQ所成角最大值為
∴直線BD與PQ所成角的取值范圍是[ ].
故選:B.

【考點(diǎn)精析】本題主要考查了異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是(
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,現(xiàn)有一組數(shù)據(jù)(數(shù)據(jù)量較大),從中隨機(jī)抽取10個(gè),繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分)
(Ⅰ)現(xiàn)從莖葉圖的數(shù)據(jù)中任取4個(gè)數(shù)據(jù)分別替換m的值,
求至少有2個(gè)數(shù)據(jù)使得函數(shù)f(x)沒有零點(diǎn)的概率;
(Ⅱ)以頻率估計(jì)概率,若從該組數(shù)據(jù)中隨機(jī)抽取4個(gè)數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒有零點(diǎn)的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且a +2an=4Sn(n∈N*).
(1)求an;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn= (n∈N* , n≥2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中, ,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn= , 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案