若多面體的各個頂點都在同一球面上,則稱這個多面體
內接于球.如圖,設長方體內接于球
兩點之間的球面距離
為________.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,平面AA1C1C⊥平面ABCD.
(1)證明:BD⊥AA1;
(2)證明:平面AB1C//平面DA1C1
(3)在直線CC1上是否存在點P,使BP//平面DA1C1?若存在,求出點P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖4,四棱錐P—ABCD中,底面ABCD是直角梯形,AB//CD,,AB=AD=2CD,側面底面ABCD,且為等腰直角三角形,,M為AP的中點。
  (1)求證:
(2)求證:DM//平面PCB;
(3)求平面PAD與平面PBC所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四棱錐的底面是邊長為1的菱形,,
E是CD的中點,PA底面ABCD,
(I)證明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知四邊形是邊長為的正方形,分別為的中點,沿向同側折疊且與平面成直二面角,連接
(1)求證
(2)求平面與平面所成銳角的余弦值。
                                                                                                                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側棱AA1=2。
(I)求證:C1D//平面ABB1A1;
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD.SD=2,,E是SD上的點。

(Ⅰ)求證:AC⊥BE;
(Ⅱ)求二面角C—AS—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

18.(本小題滿分12分)
如圖,在四棱錐VABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,側面VAD⊥底面ABCD,VA=VD,EAD的中點.
(Ⅰ)求證:平面VBE⊥平面VBC;
(Ⅱ)當直線VB與平面ABCD所成的角為30°時,求面VBE與平面VCD所成銳二面角的大。
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


正四面體ABCD的棱長為1,E在BC上,F(xiàn)在AD上,BE=2EC,DF=2FA,則EF的
長度是_________。

查看答案和解析>>

同步練習冊答案