據(jù)宜昌市氣象部門統(tǒng)計,宜昌地區(qū)每年最低氣溫在-20C以下的概率為
13

(1)設(shè)ξ為宜昌地區(qū)從2005年到2010年最低氣溫在-20C以下的年數(shù),求ξ的分布列.
(2)設(shè)η為宜昌地區(qū)從2005年到2010年首次遇到最低氣溫在-20C以下經(jīng)過的年數(shù),求η的分布列.
(3)求宜昌地區(qū)從2005年到2010年至少遇到一次最低氣溫在-20C以下的概率.
分析:(1)將每年的氣溫情況看做一次試驗,且每次實驗結(jié)果是相互獨立的,故ξ~B(6,
1
3
)
,所以ξ的分布列為P(ξ=k)=
C
k
6
(
1
3
)k(
2
3
)6-k,k=0,1,2,3,4,5,6
,列出表格即可;
(2)由于η表示宜昌地區(qū)從2005年到2010年首次遇到最低氣溫在-20C以下經(jīng)過的年數(shù),顯然η是隨機變量,其取值為0,1,2,3,4,5,然后分別求出其概率,列出η的分布列即可;
(3)宜昌地區(qū)從2005年到2010年至少遇到一次最低氣溫在-20C以下的事件為(ξ≥1)={ξ=1或ξ=2,…,ξ=6},利用對立事件的概率進行計算即可.
解答:解:(1)將每年的氣溫情況看做一次試驗,則遇到最低氣溫在-20C以下的概率為
1
3
,且每次實驗結(jié)果是相互獨立的.  
ξ~B(6,
1
3
)
,以此為基礎(chǔ)求ξ的分布列,所以ξ的分布列為P(ξ=k)=
C
k
6
(
1
3
)k(
2
3
)6-k,k=0,1,2,3,4,5,6

ξ 0 1 2 3 4 5 6
P (
2
3
)6
1
3
•(
2
3
)5
15×(
1
3
)
2
(
2
3
)
4
20×(
1
3
)
3
(
2
3
)
3
15×(
1
3
)
4
(
2
3
)
2
(
1
3
)
5
(
2
3
)
1
(
1
3
)
6
(2)由于η表示宜昌地區(qū)從2005年到2010年首次遇到最低氣溫在-20C以下經(jīng)過的年數(shù),顯然η是隨機變量,其取值為0,1,2,3,4,5,
其中{η=k}(k=0,1,2,3,4,5)表示前k年沒有遇到最低氣溫在-20C以下的情況,但在第k+1年遇到了最低氣溫在-20C以下的情況,故各概率應(yīng)按獨立事件同時發(fā)生計算.P(η=k)=(
2
3
)k
1
3
,(k=0,1,2,3,4,5)

而{η=6}表示這6年沒有遇到最低氣溫在-20C以下的情況,
故其概率為P(η=6)=(
2
3
)6
,因此η的分布列為:
η 0 1 2 3 4 5 6
P
1
3
1
3
2
3
1
3
•(
2
3
)2
1
3
•(
2
3
)3
1
3
•(
2
3
)4
1
3
•(
2
3
)5
(
2
3
)6
(3)宜昌地區(qū)從2005年到2010年至少遇到一次最低氣溫在-20C以下的事件為(ξ≥1)={ξ=1或ξ=2,…,ξ=6}
所以P(ξ≥1)=
6
i=1
P(ξ=k)=1-P(ξ=0)=1-(
2
3
)6=
665
729
≈0.9122
點評:本題主要考查了離散型隨機變量及其分布列,以及相互獨立事件的概率計算,同時考查了計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年湖北省高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

據(jù)宜昌市氣象部門統(tǒng)計,宜昌地區(qū)每年最低氣溫在-2C以下的概率為
(1)設(shè)ξ為宜昌地區(qū)從2005年到2010年最低氣溫在-2C以下的年數(shù),求ξ的分布列.
(2)設(shè)η為宜昌地區(qū)從2005年到2010年首次遇到最低氣溫在-2C以下經(jīng)過的年數(shù),求η的分布列.
(3)求宜昌地區(qū)從2005年到2010年至少遇到一次最低氣溫在-2C以下的概率.

查看答案和解析>>

同步練習(xí)冊答案