若3ax+(a2-3a+2)y-9<0表示直線3ax+(a2-3a+2)y-9=0上方的平面區(qū)域,則a的取值范圍是
 
分析:(0,0)滿足不等式3ax+(a2-3a+2)y-9<0,判斷出(0,0)在直線3ax+(a2-3a+2)y-9=0上方,求出直線的縱截距,令縱截距小于0,解不等式求出a的范圍.
解答:解:∵(0,0)滿足不等式3ax+(a2-3a+2)y-9<0
∴(0,0)在直線3ax+(a2-3a+2)y-9=0上方的平面區(qū)域
∵直線3ax+(a2-3a+2)y-9=0的縱截距為
9
a2-3a+2

9
a2-3a+2
<0

解得1<a<2
故答案為(1,2)
點(diǎn)評(píng):解決不等式表示的平面區(qū)域,常通過(guò)特殊點(diǎn)判斷出不等式表示在相應(yīng)直線的哪一側(cè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(diǎn)(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù)G(x)=
f(x),x≤0
g(x),x>0
,若方程G(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(diǎn)(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù)數(shù)學(xué)公式,若方程G(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省徐州市宿羊山高級(jí)中學(xué)高三學(xué)情調(diào)研數(shù)學(xué)試卷(1)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(diǎn)(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程G(x)=a2有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案