函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由。

解:由題意,∴3-2x>0,即x<,
所以函數(shù)f(x)的定義域?yàn)椋?∞,);
(2)令u=3-ax,則u=3-ax在[1,2]上恒正,∵a>0,a≠1,∴u=3-ax在[1,2]上單調(diào)遞減,
∴3-a·2>0,即a∈(0,1)∪(1,
又函數(shù)f(x)在[1,2]遞減,∵u=3-ax在[1,2]上單調(diào)遞減,∴a>1,即a∈(1,
又∵函數(shù)f(x)在[1,2]的最大值為1,∴f(1)=1
即f(x)=
∴a=
∵a=與a∈(1,)矛盾,∴a不存在。
練習(xí)冊(cè)系列答案
  • 1加1閱讀好卷系列答案
  • 專項(xiàng)復(fù)習(xí)訓(xùn)練系列答案
  • 初中語(yǔ)文教與學(xué)閱讀系列答案
  • 閱讀快車系列答案
  • 完形填空與閱讀理解周秘計(jì)劃系列答案
  • 英語(yǔ)閱讀理解150篇系列答案
  • 奔騰英語(yǔ)系列答案
  • 標(biāo)準(zhǔn)閱讀系列答案
  • 53English系列答案
  • 考綱強(qiáng)化閱讀系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    已知函數(shù)f(x)=log -
    1
    2
    (x2-ax+3a)在[2,+∞)上是減函數(shù),則實(shí)數(shù)a的范圍是(  )
    A、(-∞,4]
    B、(-4,4]
    C、(0,12)
    D、(0,4]

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    已知函數(shù)f(x)=log 2(x2-x-2)
    (1)求f(x)的定義域;
    (2)當(dāng)x∈[3,4]時(shí),求f(x)的值域.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    設(shè)有三個(gè)命題:“①0<
    1
    2
    <1.②函數(shù)f(x)=log 
    1
    2
    x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是
    (填序號(hào)).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    (2013•茂名二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
    ①函數(shù)f(x)=log 
    1
    2
    x為(0,+∞)上的高調(diào)函數(shù);
    ②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
    ③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
    其中正確的命題的個(gè)數(shù)是( 。

    查看答案和解析>>

    同步練習(xí)冊(cè)答案