設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),已知f(x)在R上的圖象(如圖),若f′(x)>0,則x的取值范圍是________.

(-∞,-2)∪(2,+∞)
分析:利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得出.
解答:由圖可知:當(dāng)x<-2,或x>2時,函數(shù)f(x)單調(diào)遞增,則f(x)>0.
故答案為(-∞,-2)∪(2,+∞).
點(diǎn)評:熟練掌握導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系設(shè)解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對稱.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市臨海市杜橋中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省棗莊市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對稱.
其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習(xí)冊答案