分析:(Ⅰ)先根據(jù)(ad-bc)
2≥0,得到a
2d
2-2abcd+b
2c
2≥0,即可得到a
2c
2+b
2d
2-2abcd≥a
2c
2-a
2d
2-b
2c
2+b
2d
2,整理即可得到結(jié)論;
(Ⅱ)先根據(jù)點(diǎn)P(
,tanα)在直線ax-by-2=0上,得到a
-btanα-2=0,即a
-btanα=2;再結(jié)合上一問的結(jié)論即可得證.
解答:證明:(Ⅰ)因?yàn)椋╝d-bc)
2≥0,
所以a
2d
2-2abcd+b
2c
2≥0,
所以a
2c
2+b
2d
2-2abcd≥a
2c
2-a
2d
2-b
2c
2+b
2d
2,
所以(ac-bd)
2≥(a
2-b
2)(c
2-d
2).
(Ⅱ)因?yàn)辄c(diǎn)P(
,tanα)在直線ax-by-2=0上,
所以a
-btanα-2=0,
可得:a
-btanα=2.
由(Ⅰ)可知,
(a-btanα)2≥(a
2-b
2)[
-(tanα)2]=a
2-b
2.
所以a
2-b
2≤4.
點(diǎn)評(píng):本題主要考查不等式的證明.解決問題的關(guān)鍵是根據(jù)(ad-bc)2≥0,得到a2d2-2abcd+b2c2≥0,進(jìn)而得到a2c2+b2d2-2abcd≥a2c2-a2d2-b2c2+b2d2.