設(shè),其中如果∈(-∞,1]時(shí)有意義,
的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:射線,射線,動(dòng)點(diǎn)的內(nèi)部,,,四邊形的面積恰為.
(1)當(dāng)為定值時(shí),動(dòng)點(diǎn)的縱坐標(biāo)是橫坐標(biāo)的函數(shù),求這個(gè)函數(shù)的解析式;
(2)根據(jù)的取值范圍,確定的定義域.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)且函數(shù)的圖象經(jīng)過點(diǎn)(1,2).
(1)求m的值;(2)證明函數(shù)在(1,)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)處的切線方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司有價(jià)值萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對其進(jìn)行技術(shù)改造,從而提高產(chǎn)品附加值,改造需要投入,假設(shè)附加值萬元與技術(shù)改造投入萬元之間的關(guān)系滿足:①的乘積成正比;②時(shí),;③,其中為常數(shù),且。
(1)設(shè),求表達(dá)式,并求的定義域;
(2)求出附加值的最大值,并求出此時(shí)的技術(shù)改造投入。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

觀察,,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種商品在30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)     的函數(shù)

關(guān)系用如圖所示的兩條直線段表示:
又該商品在30天內(nèi)日銷售量Q(件)與時(shí)間t(天)之間的關(guān)系
如下表所示:
第t天
5
15
20
30
Q/件
35
25
20
10
(1)根據(jù)題設(shè)條件,寫出該商品每件的銷售價(jià)格P與時(shí)間t的函
數(shù)關(guān)系式;并確定日銷售量Q與時(shí)間t的一個(gè)函數(shù)關(guān)系式;
(2),試問30天中第幾天日銷售金額最大?最大金額為多少元?    
(日銷售金額=每件的銷售價(jià)格×日銷售量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象過原點(diǎn),且在x=1處取得極值,直線與曲線在原點(diǎn)處的切線互相垂直。
(I)求函數(shù)的解析式;
(II)若對任意實(shí)數(shù)的,恒有成立,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某旅游商品生產(chǎn)企業(yè),2007年某商品生產(chǎn)的投入成本為1元/件,出廠價(jià)為1.2元/件,年銷售量為10000件,因2008年調(diào)整黃金周的影響,此企業(yè)為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本。若每件投入成本增加的比例為),則出廠價(jià)相應(yīng)提高的比例為,同時(shí)預(yù)計(jì)年銷售量增加的比例為。已知年利潤(出廠價(jià)投入成本)年銷售量。
(1)寫出2008年預(yù)計(jì)的年利潤與投入成本增加的比例的關(guān)系式;
(2)為使2008年的年利潤達(dá)到最大,則每件投入成本增加的比例應(yīng)是多少?此時(shí)最大年利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案