精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x2+(x≠0,常數a∈R).
(1)討論函數f(x)的奇偶性,并說明理由;
(2)若函數f(x)在[2,+∞)上為增函數,求實數a的取值范圍.
【答案】分析:(1)x2為偶函數,欲判函數f(x)=x2+的奇偶性,只需判定的奇偶性,討論a判定就可.
(2)處理函數的單調性問題通常采用定義法好用.
解答:解:(1)當a=0時,f(x)=x2
對任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),
∴f(x)為偶函數.
當a≠0時,f(x)=x2+(x≠0,常數a∈R),
取x=±1,得f(-1)+f(1)=2≠0,
f(-1)-f(1)=-2a≠0,
∴f(-1)≠-f(1),f(-1)≠f(1).
∴函數f(x)既不是奇函數也不是偶函數.
(2)設2≤x1<x2
f(x1)-f(x2)==[x1x2(x1+x2)-a],
要使函數f(x)在x∈[2,+∞)上為增函數,
必須f(x1)-f(x2)<0恒成立.
∵x1-x2<0,x1x2>4,
即a<x1x2(x1+x2)恒成立.
又∵x1+x2>4,∴x1x2(x1+x2)>16,
∴a的取值范圍是(-∞,16].
點評:單調性的證明步驟:
取值(在定義域范圍內任取兩個變量,并規(guī)定出大小)
做差(即f(x1)-f(x2),并且到“積”時停止)
判號(判“積”的符號)
結論(回歸題目)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案