【題目】銀川一中為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,抽取在校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調(diào)查,將收集的數(shù)據(jù)分成,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

課外體育不達標

課外體育達標

合計

合計

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”與性別有關(guān)?

(2)在這兩組中采取分層抽樣,抽取6人,再從這6名學生中隨機抽取2人參加體育知識問卷調(diào)查,求這2人中一人來自“課外體育達標”和一人來自“課外體育不達標”的概率.

附參考公式與:

【答案】(1)不能;(2).

【解析】分析:(1)根據(jù)頻率分布直方圖,計算對應的數(shù)據(jù),填寫列聯(lián)表,計算觀測值,對照數(shù)表得出結(jié)論;
(2)根據(jù)分層抽樣以及列舉法求出對應的基本事件數(shù),計算對應的概率值.

詳解:(1)由題意得“課外體育達標”人數(shù):200×[(0.02+0.005)×10]=50,

則不達標人數(shù)為150,

∴列聯(lián)表如下:

課外體育不達標

課外體育達標

合計

60

30

90

90

20

110

合計

150

50

200

∴k2==≈6.060<6.635,

∴在犯錯誤的概率不超過0.01的前提下沒有理由(或不能)認為“課外體育達標”與性別有關(guān).

(2)由題意在[0,10),[40,50)分別有20人,40人,

則采取分層抽樣在[0,10)抽取的人數(shù)為:人,

在[40,50)抽取的人數(shù)為:人,

[0,10)抽取的人為A,B,在[40,50)抽取的人為a,b,c,d,

從這6任中隨機抽取2人的情況為:AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15種,

2人中一人來自“課外體育達標”和一人來自“課外體育不達標”共有:Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd共8種,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點及圓.

(1)若直線過點且與圓心的距離為1,求直線的方程;

(2)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;

(3)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義的函數(shù),如果滿足:任意存在常數(shù),都有成立,則稱的有界函數(shù),其中為函數(shù)上界函數(shù)

(1)當時,求函數(shù)的值域,并判斷函數(shù)是否為有界函數(shù),請說明理由;

(2)若函數(shù)是以4為上界的有界函數(shù),求實數(shù)取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某人在垂直于水平地面ABC的墻面前的點A處進行射擊訓練.已知點A到墻面的距離為AB,某目標點P沿墻面上的射線CM移動,此人為了準確瞄準目標點P,需計算由點A觀察點P的仰角θ的大。鬉B=15m,AC=25m,∠BCM=30°,則tanθ的最大值是 . (仰角θ為直線AP與平面ABC所成角)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓C: (a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.

(1)已知直線l的斜率為k,用a,b,k表示點P的坐標;
(2)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a﹣b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列推理是類比推理的是( )

A. 由周期函數(shù)的定義判斷某函數(shù)是否為周期函數(shù)

B. ,猜想任何一個小6的偶數(shù)都是兩個奇質(zhì)數(shù)之和

C. 平面內(nèi)不共線的3個點確定一個圓,由此猜想空間不共面的4個點確定一個球

D. 已知為定點,若動點P滿足(其中為常數(shù)),則點的軌跡為橢圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學志愿者協(xié)會有6名男同學,4名女同學,在這10名同學中,3名同學來自數(shù)學學院,其余7名同學來自物理、化學等其他互不相同的七個學院,現(xiàn)從這10名同學中隨機選取3名同學,到希望小學進行支教活動(每位同學被選到的可能性相同).
(1)求選出的3名同學是來自互不相同學院的概率;
(2)設X為選出的3名同學中女同學的人數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設常數(shù)a≥0,函數(shù)f(x)=
(1)若a=4,求函數(shù)y=f(x)的反函數(shù)y=f1(x);
(2)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說明理由.

查看答案和解析>>

同步練習冊答案