如圖,正三棱柱ABC﹣A1B1C1的各棱長(zhǎng)都等于2,D在AC1上,F(xiàn)為BB1中點(diǎn),且FD⊥AC1
(1)試求的值;
(2)求二面角F﹣AC1﹣C的大;
(3)求點(diǎn)C1到平面AFC的距離.
解:取BC的中點(diǎn)O,建立如圖所示的空間直角坐標(biāo)系.由已知得

(1)設(shè),則,得,

∵FD⊥AC1


解得λ=1,即
(2)設(shè)平面FAC1的一個(gè)法向量為n1=(x1,y1,1)
=(1,1,),
,
又由,得,

=(,,1)
仿上可得平面ACC1的一個(gè)法向量為
=﹣×+0+1×1=0
.故二面角F﹣AC1﹣C的大小為90°.
(3)設(shè)平面AFC的一個(gè)法向量為
得x+y﹣=0
=(﹣1,0,﹣),

解得
=(﹣,2,1)
所以C1到平面AFC的距離為=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長(zhǎng)都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長(zhǎng)是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動(dòng)點(diǎn),當(dāng)OD∥平面ABC時(shí),求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案