【題目】給出下列說法:①設(shè),,則“”是“”的充分不必要條件;②若,則,使得;③為等比數(shù)列,則“”是“”的充分不必要條件;④命題“,,使得”的否定形式是“,使得 .其中正確說法的個數(shù)為( )

A.0B.1C.2D.3

【答案】B

【解析】

將“”與“”相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷充分、必要條件,由此判斷①的正確性.利用基本不等式等號成立的條件,判斷②的正確性. 將“”與“”相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷充分、必要條件,由此判斷③的正確性.根據(jù)命題的否定的知識,判斷④的正確性.

對于①,當(dāng)“”時(shí),如,結(jié)論錯誤,“”不是“”的充分條件,故①錯誤.

對于②,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)等號成立,所以,故②錯誤.

對于③,在等比數(shù)列中,當(dāng)“”時(shí),所以等比數(shù)列是單調(diào)遞增數(shù)列,所以“”.當(dāng)“”時(shí),如,不能推出“”.所以③正確.

對于④,命題“,,使得”的否定形式是“,,使得”,故④錯誤.

綜上所述,正確說法個數(shù)為個.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的長軸長為,點(diǎn)、、為橢圓上的三個點(diǎn),為橢圓的右端點(diǎn),過中心,且,

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(diǎn)(異于),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門科目中自選門參加考試(),每門科目滿分均為.為了應(yīng)對新高考,某高中從高一年級名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查,其中,女生抽取.

1)求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的物理地理兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的列聯(lián)表,請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

選擇物理

選擇地理

總計(jì)

男生

女生

總計(jì)

3)在抽取到的名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設(shè)這人中選擇物理的人數(shù)為,求的分布列及期望.附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0x2,0y2,且M+M的最小值為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動點(diǎn),求的中點(diǎn)到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對角線、交于點(diǎn) 、是棱上的中點(diǎn).

(1)求證:面;

(2)若面底面 , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)F到左頂點(diǎn)的距離為3.

1)求橢圓C的方程;

2)設(shè)O是坐標(biāo)原點(diǎn),過點(diǎn)F的直線與橢圓C交于AB兩點(diǎn)(A,B不在x軸上),若,延長AO交橢圓與點(diǎn)G,求四邊形AGBE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點(diǎn)生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時(shí)購買該易耗品,每件易耗品的價(jià)格為100元;也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購買易耗品,每件易耗品的價(jià)格為200元.為了決策在購買設(shè)備時(shí)應(yīng)同時(shí)購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.

每臺設(shè)備一個月中使用的易耗品的件數(shù)

6

7

8

頻數(shù)

型號A

30

30

0

型號B

20

30

10

型號C

0

45

15

將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.

1)求該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;

2)以該單位一個月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時(shí)應(yīng)同時(shí)購買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy,z均為正數(shù).

1)若xy1,證明:|x+z||y+z|4xyz;

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

同步練習(xí)冊答案