【題目】某旅行社組織一批游客外出旅游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿,已知45座客車租金為每輛220元,60座客車租金為每輛300元,問:

(1)這批游客的人數(shù)是多少?原計劃租用多少輛45座客車?

(2)若租用同一種車,要使每位游客都有座位,應該怎樣租用才合算?

【答案】1)游客的人數(shù)是240人,原計劃租用545座客車(2)租用460座才合算

【解析】

1)設原計劃租用45座客車輛,根據(jù)兩種客車所坐游客人數(shù)可列出方程,從而求出答案;

(2)分別求出租用兩種客車所需費用,比較二者大小,可得出答案.

(1)設原計劃租用45座客車輛,則,解得,則這批游客的人數(shù)為.

故這批游客的人數(shù)是240,原計劃租用5輛45座客車.

(2)由題意, 若租用45座客車,至少需要6輛,費用為(元),

若租用60座客車,至少需要4輛,費用為(元).

故租用460座才合算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設ω>0,函數(shù)y=2cos(ωx+ )﹣1的圖象向右平移 個單位后與原圖象重合,則ω的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調性;(2)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
(1)(I)討論f(x) 的單調性;
(2)(II)當 f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一周期內的圖像時,列表并填入的部分數(shù)據(jù)如下表:

0

0

1

0

0

0

0

0

(1)請寫出上表的及函數(shù)的解析式;

(2)將函數(shù)的圖像向右平移個單位,再將所得圖像上各點的橫坐標縮小為原來的,縱坐標不變,得到函數(shù)的圖像,求的解析式及的單調遞增區(qū)間;

(3)(2)的條件下,若上恰有奇數(shù)個零點,求實數(shù)與零點個數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標1卷)設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0 , 使得f(x0)<0,則a的取值范圍是( )
A.[-,1)
B.[-,)
C.[,)
D.[,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標I卷)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,直線C1: x=-2,圓C2:(x-1)2+(y+2)2=1,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求C1, C2的極坐標方程.
(2)若直線C3的極坐標方程為,設C2, C3的交點為M,N,求△C2MN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)如圖,橢圓E:的離心率是,點P(0,1)在短軸CD上, 且.

(1)求橢圓E的方程;
(2)設O為坐標原點,過點P的動直線與橢圓交于AB兩點.是否存在常數(shù)λ , 使得為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,m 是兩條不同的直線,m 垂直于平面 ,則“ ”是“" 的 ( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案