17.已知橢圓x2+4y2=1的長(zhǎng)軸長(zhǎng)為( 。
A.8B.4C.2D.1

分析 根據(jù)題意,將橢圓的方程變形為標(biāo)準(zhǔn)方程,分析可得a的值,進(jìn)而由長(zhǎng)軸的定義可得答案.

解答 解:根據(jù)題意,橢圓的方程為:x2+4y2=1,
化為標(biāo)準(zhǔn)方程可得:$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1,
其中a=$\sqrt{1}$=1,
則其長(zhǎng)軸長(zhǎng)2a=2;
故選:C.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,注意要先將其方程化為標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$cos(\frac{3}{2}π+α)={log_8}\frac{1}{4}$,且$α∈(-\frac{π}{2},0)$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,A=30°,則$\sqrt{3}sinA-cos({B+C})$的值為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx.
(1)若曲線g(x)=f(x)+$\frac{a}{x}$-1在點(diǎn)(2,g(2))處的切線與直線x+2y-1=0平行,求實(shí)數(shù)a的值;
(2)若m>n>0,求證$\frac{m-n}{m+n}$<$\frac{lnm-lnn}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.復(fù)數(shù)(1-i)•(1+i)的值是( 。
A.-2iB.2iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻折過程中:
①|(zhì)BM|是定值;
②點(diǎn)M在某個(gè)球面上運(yùn)動(dòng);
③存在某個(gè)位置,使DE⊥A1C;
④存在某個(gè)位置,使MB∥平面A1DE.
其中正確的命題是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知A={x|x2-2x-3<0},B={x|x2-5x+6<0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求x2+ax-b<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知某幾何體的三視圖如圖所示,俯視圖是正方形,正視圖和側(cè)視圖都是底面邊長(zhǎng)為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P是以F1,F(xiàn)2為焦點(diǎn)的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$上一點(diǎn),若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0,tan∠P{F_1}{F_2}=\frac{1}{3}$,則橢圓的離心率是( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{10}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案