(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)求與橢圓有共同的焦點(diǎn)并且與雙曲線有共同漸近線的雙曲線方程.
解:(1)由題意,可設(shè)橢圓的標(biāo)準(zhǔn)方程為,則
∵右焦點(diǎn)坐標(biāo)是(2,0),經(jīng)過點(diǎn)
∴c2=a2﹣b2=4,,
解得a2=8,b2=4.
橢圓的標(biāo)準(zhǔn)方程為;                    
(2)橢圓的焦點(diǎn)坐標(biāo)為(0,±5),
雙曲線的漸近線方程為y=±x,
由題意可設(shè)雙曲線的標(biāo)準(zhǔn)方程為,
則c2=a2+b2=25,=,解得a2=16,b2=9.
雙曲線的標(biāo)準(zhǔn)方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)(-2,-
2
)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0).設(shè)斜率為k的直線l交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上.
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)( -2 , -
2
 )
的橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設(shè)斜率為k的直線l,交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)( -2 ,-
2
 )
的橢圓的標(biāo)準(zhǔn)方程;
(2)求與橢圓
x2
24
+
y2
49
=1
有共同的焦點(diǎn)并且與雙曲線
x2
36
-
y2
64
=1
有共同漸近線的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年江蘇省南京師范大學(xué)附屬揚(yáng)子中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)(-2,-)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知橢圓C的方程是+=1(a>b>0).設(shè)斜率為k的直線l交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上.
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案