在四棱錐P-ABCD中底面ABCD是平行四邊形,AB⊥AC,AC⊥PB,E為PD上一點(diǎn),PE=
1
2
PD,求證:PB∥平面AEC.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:欲證PB∥面AEC,根據(jù)直線與平面平行的判定定理可知只需證PB與面AEC內(nèi)一直線平行即可,連接BD交AC于點(diǎn)O,并連接EO,根據(jù)中位線可知EO∥PB,PB?面AEC,EO?面AEC滿足定理所需條件.
解答: 證明:連接BD交AC于點(diǎn)O,并連接EO
∵四邊形ABCD為平行四邊形,
∴O為BD的中點(diǎn)
又PE=
1
2
PD,
即有E為PD的中點(diǎn),
∴在△PDB中EO為中位線,
則EO∥PB,
∵PB?面AEC,EO?面AEC
∴PB∥面AEC.
點(diǎn)評(píng):本題考查空間直線和平面平行的判定定理及運(yùn)用,同時(shí)考查三角形的中位線定理,考查推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a6=192,a8=768,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,兩定點(diǎn)A(-6,0),B(2,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P對(duì)線段AO,BO所張的角相等(即∠APO=∠BPO),求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(2,0),B(5,2),并且被直線l:x-y=0平分.
(1)求圓的方程;
(2)若點(diǎn)P到圓C的任意一點(diǎn)的最小距離和點(diǎn)P到x軸的距離相等,求動(dòng)點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+1)(x>0).
(Ⅰ)令F(x)=-
1
2
x2+f
(x),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)若直線l與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點(diǎn).求證:x1
x1-x2
f(x1)-f(x2)
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,則在x、y軸上截距分別為a、b的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的圖象與y=x+
1
x
的圖象關(guān)于x=1軸對(duì)稱,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a4=20,a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•log 
1
2
an,數(shù)列{bn}的前n項(xiàng)和為Sn,Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為(2
2
,0),且過點(diǎn)(2
3
,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓C交于不同兩點(diǎn)A、B,且|AB|=3
2
.若點(diǎn)P(x0,2)滿足|
PA
|=|
PB
|,求x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案