19.在數(shù)列{an}中,前n項(xiàng)和為Sn,且Sn=$\frac{n(n+1)}{2}$,數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=$\frac{{a}_{n}}{{2}^{n}}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在m,n∈N*,使得Tn=am,若存在,求出所有滿足題意的m,n,若不存在,請(qǐng)說明理由.

分析 (1)當(dāng)n=1時(shí),a1=S1=1;當(dāng)n≥2時(shí),an=Sn-Sn-1=n,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由已知:Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$,由此利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn,即可得出結(jié)論.

解答 解:(1)當(dāng)n=1時(shí),a1=S1=1
當(dāng)n≥2時(shí),an=Sn-Sn-1=n
經(jīng)驗(yàn)證,a1=1滿足上式,故數(shù)列{an}的通項(xiàng)公式an=n;…(6分)
(2)由題意,易得Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$
∴$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{n}{{2}^{n+1}}$,
兩式相減得$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
所以Tn=2-$\frac{n+2}{{2}^{n}}$…(10分)
由于Tn<2,又2-$\frac{n+2}{{2}^{n}}$=m,∴m=1,解得n=2.…(12分)

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,考查錯(cuò)位相減法的合理運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三個(gè)數(shù)60.7,(0.7)6,log0.76的大小順序是( 。
A.(0.7)6<log0.76<60.7B.(0.7)6<60.7<log0.76
C.log0.76<60.7<(0.7)6D.log0.76<(0.7)6<60.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)={x^2}-\frac{1}{2^x}$的零點(diǎn)有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+y-xy=0,則3x+2y的最小值為5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC,
(1)求證:AC⊥平面DEF;
(2)求平面DEF與平面ABD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)$z=\frac{2}{1+i}$的虛部( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x-2sinx.
(Ⅰ)求函數(shù)f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的最值;
(Ⅱ)若存在$x∈({0,\frac{π}{2}})$,使得不等式f(x)<ax成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1,其左右焦點(diǎn)分別為F1,F(xiàn)2,過其左焦點(diǎn)且斜率為1的直線與該橢圓相交與A,B兩點(diǎn),則$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-4}}{1-{x}^{3}}$,g(x)=$\frac{{x}^{3}-1}{\sqrt{9-{x}^{2}}}$,則f(x)•g(x)=-$\frac{\sqrt{{x}^{2}-4}}{\sqrt{{9-x}^{2}}}$,x∈(-3,-2]∪[2,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案