某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元。為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?

(1)500(2)

解析試題分析:(1)由題意找出關(guān)于x的不等式:
解不等式可求得最多調(diào)整出多少名員工從事第三產(chǎn)業(yè).
(2)從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤(rùn)為萬(wàn)元,從事原來(lái)產(chǎn)業(yè)的員工的年總利潤(rùn)為萬(wàn)元,找出關(guān)于x的不等式:恒成立,
用分離參數(shù)法得恒成立,從而轉(zhuǎn)化為關(guān)于x的函數(shù)求最值,由均值不等式得
試題解析:解:(1)由題意得:
所以   
即最多調(diào)整500名員工從事第三產(chǎn)業(yè).
(2)從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤(rùn)為萬(wàn)元,從事原來(lái)產(chǎn)業(yè)的員工的年總利潤(rùn)為萬(wàn)元,
恒成立,
所以,  所以,   
恒成立,      
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/59/6/witck1.png" style="vertical-align:middle;" />
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
所以,又,所以,
的取值范圍為.         
考點(diǎn):利用不等式求最值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)
(1)求函數(shù)的最小值;
(2)問(wèn)是否存在這樣的正數(shù),當(dāng)時(shí),,且的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/71/8/jgfgm2.png" style="vertical-align:middle;" />?若存在,求出所有的的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比,求公園ABCD所占面積S關(guān)于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬應(yīng)如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別為P(單位:萬(wàn)元)和Q(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式, .  今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資(單位:萬(wàn)元)
(1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何投資經(jīng)營(yíng)甲、乙兩種商品,才能使得總利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且
(1)求實(shí)數(shù)c的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,制圖工程師要用兩個(gè)同中心的邊長(zhǎng)均為4的正方形合成一個(gè)八角形圖形.由對(duì)稱性,圖中8個(gè)三角形都是全等的三角形,設(shè)

(1)試用表示的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時(shí)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對(duì)于t∈恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)y=-x2mx-1與以A(0,3)、B(3,0)為端點(diǎn)的線段(包含端點(diǎn))有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

函數(shù)的值域?yàn)開(kāi)_______________________.  

查看答案和解析>>

同步練習(xí)冊(cè)答案