1.已知復(fù)數(shù)z1=2t+i,z2=1-2i,若$\frac{z_1}{z_2}$為實(shí)數(shù),則實(shí)數(shù)t的值是( 。
A.1B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

分析 把z1=2t+i,z2=1-2i代入$\frac{z_1}{z_2}$,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由虛部為0得答案.

解答 解:∵z1=2t+i,z2=1-2i,
∴$\frac{z_1}{z_2}$=$\frac{2t+i}{1-2i}=\frac{(2t+i)(1+2i)}{(1-2i)(1+2i)}=\frac{(2t-2)+(4t+1)i}{5}$,
又$\frac{z_1}{z_2}$為實(shí)數(shù),∴4t+1=0,即t=$-\frac{1}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=\frac{2}{x}$,則曲線上過點(diǎn)(1,2)處的切線方程為2x+y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在平面四邊形ABCD中,AB=AD=CD=1,$BD=\sqrt{2}$,BD⊥CD,將其沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,若四面體A′-BCD頂點(diǎn)在同一球面上,則該球的表面積為(  )
A.$\frac{{\sqrt{3}}}{2}π$B.C.$\frac{{\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=$\sqrt{3}$cosx+sinx(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{3}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4,AC⊥BC,點(diǎn)D在線段AB上.
(Ⅰ)證明AC⊥B1C;
(Ⅱ)若D是AB中點(diǎn),證明AC1∥平面B1CD;
(Ⅲ)當(dāng)$\frac{BD}{AB}$=$\frac{1}{3}$時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.i為虛數(shù)單位,復(fù)數(shù)(1+i)2+$\frac{2}{1-i}$的共軛復(fù)數(shù)是( 。
A.1+3iB.-1+3iC.1-3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)i為虛數(shù)單位,則$\frac{2+i}{1-i}$-(1-i)=$-\frac{1}{2}+\frac{5}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=( 。
A.-1+2iB.1-2iC.-1-2iD.1+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案