要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格小鋼板的塊數(shù)如下表.

每張鋼板的面積,第一種為1 m2,第二種為2 m2,今需要A、B、C三種規(guī)格的成品各為12、15、27塊.各截這兩種鋼板多少張,可得所需三種規(guī)格成品,且使所用鋼板面積最小?

答案:
解析:

設(shè)需截第一種鋼板x張,第種鋼板y張,所用鋼板面積為z m2,則有其中x,y為整數(shù),目標函數(shù)為z=x+2y作出可行域(如圖所示),作一組平行直線x+2y=t.由.由于點不是可行域內(nèi)的整點,而在可行域內(nèi)的整點中,點(4,8)和(6,7)使z最小,且zmin=4+2×8=20.所以應(yīng)截第一種鋼板4張,第二種鋼板8張,或第一種鋼板6張,第二種鋼板7張,可得所需三種規(guī)格成品,且使用鋼板的面積最。


提示:

在可行城內(nèi)找整點最優(yōu)解的常用方法有:(1)打網(wǎng)格,描整點,平移直線,找出整點最優(yōu)解.(2)分析法(也叫調(diào)整優(yōu)值法):由于在A點z取得最小值19.5,而x,y為整數(shù),則z必為整數(shù).比19.5大的最小整數(shù).是20,則問題轉(zhuǎn)化為在約束條件下求x+2y=20的整數(shù)解的組數(shù),將代入約束條件得4≤x≤6且x為偶數(shù),所以x=4或6.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格小鋼板的塊數(shù)如下表所示:
類    型 A規(guī)格 B規(guī)格 C規(guī)格
第一種鋼板 1 2 1
第二種鋼板 1 1 3
每張鋼板的面積,第一種為1m2,第二種為2m2,今需要A、B、C三種規(guī)格的成品各12、15、27塊,問各截這兩種鋼板多少張,可得所需三種規(guī)格成品,且使所用鋼板面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板塊數(shù)如下表:
A規(guī)格 B規(guī)格 C規(guī)格
第一種鋼板 2 1 1
第二種鋼板 1 2 3
今需A、B、C三種規(guī)格的成品各15、18、27塊,所需兩種規(guī)格的鋼板的張數(shù)分別為m、n(m、n為整數(shù)),則m+n的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•增城市模擬)要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:

      規(guī)格類型

鋼板類型

A

B

C
第一種鋼板    2     1      1
第二種鋼板    1     2      3
今需要A,B,C三種規(guī)格的成品分別為15、18、27塊,要使所用鋼板張數(shù)最少,第一、第二種鋼板的張數(shù)各是
3,9或4,8
3,9或4,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:
規(guī)格類型 A規(guī)格 B規(guī)格 C規(guī)格
鋼板類型
第一種鋼板 2 1 1
第二種鋼板 1 2 3
今需A、B、C三種規(guī)格的成品分別為15、18、27塊,問各截這兩種鋼板多少張可得所需三種規(guī)格成品,且使所用鋼板張數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆馬鞍山中加雙語學(xué)校高一第二學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格小鋼板的塊數(shù)如下表所示:

       類    型

A規(guī)格

B規(guī)格

C規(guī)格

第一種鋼板

1

2

1

第二種鋼板

1

1

3

每張鋼板的面積,第一種為,第二種為,今需要A、B、C三種規(guī)格的成品各12、15、27塊,問各截這兩種鋼板多少張,可得所需三種規(guī)格成品,且使所用鋼板面積最小?

 

查看答案和解析>>

同步練習(xí)冊答案