如圖,已知∠BAC在平面α內,P∉α,∠PAB=∠PAC,求證:點P在平面α上的射影在∠BAC的平分線上.
證明:作PO⊥α,PE⊥AB,PF⊥AC,
垂足分別為O,E,F(xiàn),連接OE,OF,OA,
PE⊥AB,PF⊥AC
∠PAE=∠PAF
PA=PA
⇒Rt△PAE≌Rt△PAF⇒AE=AF,
PO⊥α
AB?α
⇒AB⊥PO
,
又∵AB⊥PE,PO∩PE=P,
∴AB⊥平面PEO,
∴AB⊥OE,同理AC⊥OF.
在Rt△AOE和Rt△AOF,AE=AF,OA=OA,
∴Rt△AOE≌Rt△AOF,∴∠EAO=∠FAO,
即點P在平面α上的射影在∠BAC的平分線上.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABC,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若點M在線段EF上運動,設平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知α∩β=CD,EA⊥α,垂足為A,EB⊥β,垂足為B,求證CD⊥AB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是菱形,且∠DAB=60°,側面PAD為正三角形,其所在的平面垂直于底面ABCD,求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分別是A1B、B1C1的中點.
(Ⅰ)求證:MN⊥平面A1BC;
(Ⅱ)求直線BC1和平面A1BC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,點D,E分別是BC,B1C1的中點,BC1∩B1D=F,BC=
2
BB1
.求證:
(1)平面A1EC平面AB1D;
(2)平面A1BC1⊥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面α,β,γ,且平面α平面β,平面α⊥平面γ;
求證:平面β⊥平面γ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=
2
,D是A1B1中點.
(1)求證C1D⊥平面AA1B1B;
(2)當點F在BB1上什么位置時,會使得AB1⊥平面C1DF?并證明你的結論.

查看答案和解析>>

同步練習冊答案