已知函數(shù)f(x)=
x2
1+x2

(1)求f(2),f(
1
2
),f(3),f(
1
3

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(
1
x
)有什么關(guān)系?并證明你的發(fā)現(xiàn);
(3)f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
分析:(1)由f(x)=
x2
1+x2
即可求得f(2),f(
1
2
),f(3),f(
1
3
);
(2)根據(jù)f(2)+f(
1
2
)=1,f(3)+f(
1
3
)=1可得f(x)+f(
1
x
)=1,然后代入解析式進(jìn)行證明即可;
(3)根據(jù)f(x)+f(
1
x
)=1,從而可求f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
)的值.
解答:解:(1)f(2)=
4
5
,f(
1
2
)=
1
5

f(3)=
9
10
,f(
1
3
)=
1
10

(2)f(x)+f(
1
x
)=1
證:f(x)+f(
1
x
)=
x2
1+x2
+
(
1
x
)2
1+(
1
x
)2
=
x2
1+x2
+
1
1+x2
=1
(3)f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011

=f(1)+[f(2)+f(
1
2
)]+[f(3)+f(
1
3
)]+…+[f(2011)+f(
1
2011
)]
=
1
2
+2010
=2010.5
點(diǎn)評:本題考查函數(shù)的值,考查數(shù)列的求和,求得f(x)+f(
1
x
)=1是關(guān)鍵,考查分析、轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案