直線ρcosθ=2截圓(θ為參數(shù))所得的弦長為   
【答案】分析:把參數(shù)方程化為普通方程,極坐標方程化為直角坐標方程,求出 圓心到直線的距離,由弦長公式求得弦長.
解答:解:直線ρcosθ=2 即 x=2.圓(θ為參數(shù)) 即 (x-1)2+(y+2)2=4,
表示以(1,-2)為圓心,以2為半徑的圓.
圓心到直線  x=2的距離d=1,由弦長公式可得弦長為 2=2=2,
故答案為
點評:本題考查把參數(shù)方程化為普通方程的方法,極坐標方程化為直角坐標方程的方法,點到直線的距離公式,弦長公式的應用,求出圓心到直線  x=2的距離是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線ρcosθ=2截圓
x=1+2cosθ
y=-2+2sinθ
(θ為參數(shù))所得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

直線ρcosθ=2截圓數(shù)學公式(θ為參數(shù))所得的弦長為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

直線ρcosθ=2截圓(θ為參數(shù))所得的弦長為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省廣州市海珠區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

直線ρcosθ=2截圓(θ為參數(shù))所得的弦長為   

查看答案和解析>>

同步練習冊答案