設(shè) f:x→|x|是集合A到集合B的映射,若A={-1,0,1},則A∩B只可能是( )
A.{0}
B.{1}
C.{0,1}
D.{-1,0,1}
【答案】分析:找出集合A中的元素,根據(jù)對(duì)應(yīng)法則分別求出每一個(gè)元素所對(duì)的象,從而確定出集合B,然后求出集合A和集合B的交集即可.
解答:解:因?yàn)閒:x→|x|是集合A到集合B的映射,
集合A的元素分別為-1,0,1,且|-1|=1,|1|=1,|0|=0,
所以集合B={0,1},又A={-1,0,1},
所以A∩B={0,1},
則A∩B只可能是{0,1}.
故選C
點(diǎn)評(píng):此題考查了映射的定義,以及交集的運(yùn)算,根據(jù)映射定義確定出集合B是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:x→|x|是集合A到集合B的映射.若A={-3,0,3},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)集合D中的任意兩數(shù)x1,x2恒有數(shù)學(xué)公式成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)任意實(shí)數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對(duì)任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺(tái)州市臨海市杜橋中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案