(文)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實(shí)數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點(diǎn)“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程;

(2)已知拋物線C1:y2=2x,經(jīng)過伸縮變換后得拋物線C2:y2=32x,求伸縮比λ.
(3)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點(diǎn)A、B,且|AB|=
2
,求橢圓C2的方程.
(1)曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,
∴C1關(guān)于原點(diǎn)“伸縮變換”后所得曲線C2的方程為:
4x2
9
-
4y2
4
=1
,即
4x2
9
-
y2
1
=1
;
(2)拋物線C1:y2=2x,經(jīng)過伸縮變換后得拋物線C2:λ2y2=λx,?y2=
1
λ
x
1
λ
=32,?則伸縮比λ=
1
32
;
(3)∵C2、C1關(guān)于原點(diǎn)“伸縮變換”,對(duì)C1作變換(x,y)→(λx,λy)(λ>0),
得到C2
λ2x2
16
+
λ2y2
4
=1
,(12分)
解方程組
y=
2
2
x (x≥0)
x2
16
+
y2
4
=1
得點(diǎn)A的坐標(biāo)為(
4
3
3
,
2
6
3
)
(14分)
解方程組
y=
2
2
x (x≥0)
λ2x2
16
+
λ2y2
4
=1
得點(diǎn)B的坐標(biāo)為(
4
3
2
6
)
(15分)
|AB|=
(
4
3
-
4
3
3
)
2
+(
2
6
-
2
6
3
)
2
=
2
2
|λ-1|
|λ|
=
2
,
化簡(jiǎn)后得3λ2-8λ+4=0,解得λ1=2,λ2=
2
3
,
因此橢圓C2的方程為
x2
4
+y2=1
x2
36
+
y2
9
=1
.(18分)(漏寫一個(gè)方程扣2分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年西城區(qū)抽樣文)(14分)

   已知f是直角坐標(biāo)平面xOy到自身的一個(gè)映射,點(diǎn)在映射f下的象為點(diǎn),記作.

設(shè),,. 如果存在一個(gè)圓,使所有的點(diǎn)都在這個(gè)圓內(nèi)或圓上,那么稱這個(gè)圓為點(diǎn)的一個(gè)收斂圓. 特別地,當(dāng)時(shí),則稱點(diǎn)為映射f下的不動(dòng)點(diǎn).

若點(diǎn)在映射f下的象為點(diǎn).     

(Ⅰ) 求映射f下不動(dòng)點(diǎn)的坐標(biāo);

     (Ⅱ) 若的坐標(biāo)為(2,2),求證:點(diǎn)存在一個(gè)半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高二上學(xué)期數(shù)學(xué)單元測(cè)試4 題型:解答題

 

 
   (理)如圖,建立空間直角坐標(biāo)系數(shù)xOyz,棱長為2的正方體OABC—O′A′B′C′被一平面截得四邊形MNPQ,其中N、Q分別是BB′、OO′的中點(diǎn),

   (Ⅰ)求k的值;

   (Ⅱ)求

 

 

 

 

(文)某村計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室. 在溫室內(nèi),種植蔬菜時(shí)需要沿左、右兩側(cè)與前側(cè)內(nèi)墻各保留1m寬的空地作為通道,后側(cè)內(nèi)墻不留空地(如圖所示),問當(dāng)溫室的長是多少米時(shí),能使蔬菜的種植面積最大?

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案