【答案】
分析:(1)把a=2代入原函數(shù)解析式中,求出函數(shù)在x=1時的導(dǎo)數(shù)值,直接利用直線方程的點斜式寫直線方程;
(2)求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)可知,當(dāng)a≤0時,f
′(x)>0,函數(shù)在定義域(0,+∝)上單調(diào)遞增,函數(shù)無極值,當(dāng)a>0時,求出導(dǎo)函數(shù)的零點,由導(dǎo)函數(shù)的零點對定義域分段,利用原函數(shù)的單調(diào)性得到函數(shù)的極值.
解答:解:函數(shù)f(x)的定義域為(0,+∞),
.
(1)當(dāng)a=2時,f(x)=x-2lnx,
,
因而f(1)=1,f
′(1)=-1,
所以曲線y=f(x)在點A(1,f(1))處的切線方程為y-1=-(x-1),
即x+y-2=0
(2)由
,x>0知:
①當(dāng)a≤0時,f
′(x)>0,函數(shù)f(x)為(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;
②當(dāng)a>0時,由f
′(x)=0,解得x=a.
又當(dāng)x∈(0,a)時,f
′(x)<0,當(dāng)x∈(a,+∞)時,f
′(x)>0.
從而函數(shù)f(x)在x=a處取得極小值,且極小值為f(a)=a-alna,無極大值.
綜上,當(dāng)a≤0時,函數(shù)f(x)無極值;
當(dāng)a>0時,函數(shù)f(x)在x=a處取得極小值a-alna,無極大值.
點評:本題考查了利用導(dǎo)數(shù)研究曲線上某點處的切線方程,考查了利用導(dǎo)數(shù)研究函數(shù)的極值,考查了分類討論得數(shù)學(xué)思想,屬中檔題.