如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過點,平分,經(jīng)過點的直線分別交的延長線于點,且,證明:

(1);
(2)是☉的切線.

(1)借助于兩個三角形中兩個角對應相等來加以證明。
(2)利用切割線定理來得到證明

解析試題分析:(1)根據(jù)題意,由于四邊形是☉的內(nèi)接四邊形,不經(jīng)過點平分,經(jīng)過點的直線分別交的延長線于點,且,根據(jù)同弧所對的圓周角相等,以及內(nèi)角平分線的性質(zhì)可知,那么對于三角形ABC,與三角形CDF中有兩組角對應相等,B= D,A= C,得到;
(2)根據(jù)相似的結論可知,同時,那么可知,,因此可知是☉的切線.
考點:相似三角形,切線的證明
點評:主要是考查了圓的內(nèi)部的性質(zhì)以及三角形相似的證明,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講  
如圖,直線為圓的切線,切點為,點在圓上,的角平分線交圓于點垂直交圓于點。

(Ⅰ)證明:
(Ⅱ)設圓的半徑為,,延長于點,求外接圓的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,的切線,過圓心, 的直徑,相交于、兩點,連結、. (1) 求證:
(2) 求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖△為直角三角形,,以為直徑的圓交于點,點邊的中點,連交圓于點

(Ⅰ)求證:、、四點共圓;
(Ⅱ)設,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.

(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直角三角形的頂點坐標,直角頂點,頂點軸上,點為線段的中點

(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動圓過點且與圓內(nèi)切,求動圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

切線與圓切于點,圓內(nèi)有一點滿足,的平分線交圓于,,延長交圓于,延長交圓于,連接

(Ⅰ)證明://
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的等邊△ABC中,D、E分別為邊ABAC上的點,若A關于直線DE的對稱點A1恰好在線段BC上,

(1)①設A1Bx,用x表示AD;②設∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點,AB是的直徑,過A點作的切線交于點E,并與BO1的延長線交于點P,PB分別與、交于C,D兩點.
求證:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

同步練習冊答案