已知函數(shù)f(x)=(a+1)lnx+ax2+1.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)a≤-2,證明:對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.
分析:(1)先求出函數(shù)的定義域,然后對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增、導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減對(duì)a分3種情況進(jìn)行討論.
(2)先根據(jù)a的范圍對(duì)函數(shù)f(x)的單調(diào)性進(jìn)行判斷,然后根據(jù)單調(diào)性去絕對(duì)值,將問題轉(zhuǎn)化為證明函數(shù)g(x)=f(x)+4x的單調(diào)性問題.
解答:解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),
f′(x)=+2ax=.
當(dāng)a≥0時(shí),f′(x)>0,故f(x)在(0,+∞)單調(diào)增加;
當(dāng)a≤-1時(shí),f′(x)<0,故f(x)在(0,+∞)單調(diào)減少;
當(dāng)-1<a<0時(shí),令f′(x)=0,解得x=
.當(dāng)x∈(0,
)時(shí),f′(x)>0;
x∈(
,+∞)時(shí),f′(x)<0,
故f(x)在(0,
)單調(diào)增加,在(
,+∞)單調(diào)減少.
(Ⅱ)不妨假設(shè)x
1≤x
2.由于a≤-2,故f(x)在(0,+∞)單調(diào)遞減.
所以|f(x
1)-f(x
2)|≥4|x
1-x
2|等價(jià)于f(x
1)-f(x
2)≥4x
2-4x
1,
即f(x
2)+4x
2≤f(x
1)+4x
1.
令g(x)=f(x)+4x,則
g′(x)=+2ax+4=
.
于是g′(x)≤
=
≤0.
從而g(x)在(0,+∞)單調(diào)減少,故g(x
1)≥g(x
2),
即f(x
1)+4x
1≥f(x
2)+4x
2,故對(duì)任意x
1,x
2∈(0,+∞),|f(x
1)-f(x
2)|≥4|x
1-x
2|.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.