已知橢圓數(shù)學(xué)公式=1(a>b>0)的離心率為數(shù)學(xué)公式,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2
垂直于直線l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程:
(3)C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足數(shù)學(xué)公式,若R、S到x軸的距離分別為d1和d2,求d1+d2的最小值.

解:(1)由 得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,
,,∴橢圓C1的方程為:.(4分)
(2)由MP=MF2得動點M的軌跡是以l1:x=-1為準(zhǔn)線,
F2為焦點的拋物線,∴點M的軌跡C2的方程為y2=4x.(8分)
(3)Q(0,0),設(shè)
,
,得,∴y1y2=-16,
∴d1+d2=|y1|+|y2|═|y1|+||≥8,
當(dāng)y1=±4時取等號,d1+d2的最小值為8.
分析:(1)先由離心率為 ,求出a,b,c的關(guān)系,再利用直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓相切,求出b即可求橢圓C1的方程;
(2)把題中條件轉(zhuǎn)化為動點M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點的拋物線,即可求點M的軌跡C2的方程;
(3)先設(shè)出點R,S的坐標(biāo),利用 求出點R,S的坐標(biāo)之間的關(guān)系,再用點R,S的坐標(biāo)表示出 d1+d2,利用函數(shù)求最值的方法即可求 d1+d2的最小值.
點評:本題是對圓與橢圓知識的綜合考查.當(dāng)直線與圓相切時,可以利用圓心到直線的距離等于半徑求解.,也可以把直線與圓的方程聯(lián)立讓對應(yīng)方程的判別式為0求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓=1(ab>0)的離心率為,,則橢圓方程為( 。

A.=1

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省武漢市六校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知橢圓+=1(a>b>0)的中心為O,右焦點為F、右頂點為A,右準(zhǔn)線與x軸的交點為H,則的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓+=1(a>b>0)的中心為O,右焦點為F、右頂點為A,右準(zhǔn)線與x軸的交點為H,則的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:解答題

(12分)如圖,已知橢圓=1(a>b>0)過點(1,),離心率為,左、右焦點分別為F1、F2. 點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2, 證明:=2;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:選擇題

已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若(應(yīng)為PB),則離心率為

A、         B、         C、           D、

 

查看答案和解析>>

同步練習(xí)冊答案