(一)已知a,b,c∈R+
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結(jié)論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求證:數(shù)學公式
②利用①的結(jié)論求數(shù)學公式的最小值.

證明:(一)①a2+b2≥2ab,c2+b2≥2bc,a2+c2≥2ac,…(3分)
三式相加可得a2+b2+c2≥ab+bc+ac
當且僅當a=b=c時等號成立 …(6分)
②1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≥3(ab+bc+ac)…(9分)
,當且僅當a=b=c時等號成立. …(12分)
(二)①要證,只要證,…(3分)

當且僅當bx=ay時等號成立.故原不等式得證. …(6分)
②由①的結(jié)論知:,
當且僅當時,等號成立. …(12分)
分析:(一)①從不等式的左邊入手,左邊對應(yīng)的代數(shù)式的二倍,分別寫成兩兩相加的形式,在三組相加的式子中分別用均值不等式,整理成最簡形式,得到右邊的2倍,兩邊同時除以2,得到結(jié)果.
②由①得1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≥3(ab+bc+ac)從而求出ab+bc+ac的最大值;
(二)①利用分析法進行證明.要證,只要證左邊展開利用基本不等式證明即可;
②由①的結(jié)論知:,從而求出最大值.
點評:本題考查均值不等式的應(yīng)用,考查不等式的證明方法,是一個基礎(chǔ)題,這種題目常�?紤]分拆后利用基本不等式,因為題目分拆后才符合均值不等式的表現(xiàn)形式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(一)已知a,b,c∈R+,
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結(jié)論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求證:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的結(jié)論求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(一)已知a,b,c∈R+
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結(jié)論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+,
①求證:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的結(jié)論求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年福建省莆田四中高二(上)模塊數(shù)學試卷(理科)(解析版) 題型:解答題

(一)已知a,b,c∈R+,
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結(jié)論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+,
①求證:
②利用①的結(jié)論求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年福建省莆田四中高二(上)模塊數(shù)學試卷(文科)(解析版) 題型:解答題

(一)已知a,b,c∈R+
①求證:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的結(jié)論求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求證:
②利用①的結(jié)論求的最小值.

查看答案和解析>>

同步練習冊答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�