設(shè)an=
n
k=1
1
k(n+1-k)
,求證:當(dāng)正整數(shù)n≥2時,an+1<an
分析:先對數(shù)列的通項化簡,再作差,證明其大于0,即可證得結(jié)論.
解答:證明:由于
1
k(n+1-k)
=
1
n+1
(
1
k
+
1
n+1-k
)
,因此
an=
n
k=1
1
k(n+1-k)
=
n
k=1
1
n+1
(
1
k
+
1
n+1-k
)
=
1
n+1
(1+
1
n
+
1
2
+
1
n-1
+…+
1
n
+1)
=
2
n+1
(1+
1
2
+…+
1
n
)
=
2
n+1
n
k=1
1
k

于是,對任意的正整數(shù)n≥2,有
1
2
(an-an+1)=
1
n+1
n
k=1
1
k
-
1
n+2
n+1
k=1
1
k

=(
1
n+1
-
1
n+2
)
n
k=1
1
k
-
1
(n+1)(n+2)
=
1
(n+1)(n+2)
(
n
k=1
1
k
-1)>0
,即an+1<an
點評:本題考查數(shù)列與不等式的綜合,考查學(xué)生分析解決問題的能力,對數(shù)列的通項化簡是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案