【題目】(本小題滿分12)

設(shè)函數(shù)有兩個(gè)極值點(diǎn),且

I)求的取值范圍,并討論的單調(diào)性;

II)證明: w.w.w..c.o.m

【答案】:()因?yàn)?/span>,設(shè),

依題意知,所以的取值范圍是

,由,

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間,

其中, .

)證明:由()知,設(shè),

所以遞減,又處連續(xù),所以,

.

【解析】:()首先求出函數(shù)的導(dǎo)數(shù),因?yàn)樵瘮?shù)有兩個(gè)極值點(diǎn),所以導(dǎo)函數(shù)有兩個(gè)不同解,因?yàn)檎鏀?shù),所以兩個(gè)根都要在定義域內(nèi),這樣就轉(zhuǎn)化為了一元二次方程根分布問題,求出的取值范圍.

利用求得函數(shù)的的單調(diào)遞增區(qū)間,利用求出單間區(qū)間.一定注意單調(diào)區(qū)間在定義域內(nèi).

II)因?yàn)?/span>不確定, 就不確定,它是參數(shù)函數(shù),要使恒成立,只需的最小值大于即可.把恒成立問題轉(zhuǎn)化為求函數(shù)的最值來解決,求函數(shù)的最值還是用導(dǎo)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,[x]表示不超過x的最大整數(shù),若存在實(shí)數(shù)t,使得[t]=1,[t2]=2,…,[tn]=n同時(shí)成立,則正整數(shù)n的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.

(1)求{an}的通項(xiàng)公式.

(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣3)=0,則xf(x)>0的解集是(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.
(1)若a=﹣1,求A∪B,(RA)∩B.
(2)若A∩B=,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x),x∈(0,+∞),f(x)=lgx,則不等式f(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)試分別估計(jì)芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機(jī)變量X的分布列及生產(chǎn)1件芯片甲和1件芯片乙所得總利潤的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn)P(0,2),l和C交于A,B兩點(diǎn),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)若 是直線軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;

(Ⅱ)若直線被圓截得的弦長等于圓的半徑倍,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案