曲線f(x)=
x
點(diǎn)(4,2)處切線方程是( 。
分析:由f(x)=
x
,知f(x)=
1
2
x-
1
2
,由此能求出曲線f(x)=
x
點(diǎn)(4,2)處切線方程.
解答:解:∵f(x)=
x
,
f(x)=
1
2
x-
1
2

∴k=f′(4)=
1
2
×4-
1
2
=
1
4
,
∴曲線f(x)=
x
點(diǎn)(4,2)處切線方程是y-2=
1
4
(x-4)
,
整理,得x-4y+4=0.
故選A.
點(diǎn)評(píng):本題考查曲線上某點(diǎn)處的切線方程的求法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)的幾何意義的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(2x+1)+bx+1.
(I)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(Ⅱ)若b=
12
,試討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=
x-1
在點(diǎn)A(2,1)處的切線為直線l
(1)求切線l的方程;
(2)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線f(x)=
x
點(diǎn)(4,2)處切線方程是( 。
A.x-4y+4=0B.x+4y+4=0C.4x-y+4=0D.4x+y+4=0

查看答案和解析>>

同步練習(xí)冊(cè)答案