已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過(guò)F作斜率為k(k≠0)的直線l交橢圓于M,N兩點(diǎn),P為線段MN的中點(diǎn),設(shè)O為橢圓中心,射線OP交橢圓于點(diǎn)Q,若,若存在求k的值,若不存在則說(shuō)明理由.

解:(Ⅰ)∵橢圓的離心率為,


,
∵AB⊥AF,
∴AB的方程為:
令y=0,∴,∴
∴A,B,F(xiàn)三點(diǎn)確定的圓的圓心坐標(biāo)為,半徑為r=a
∴圓心到直線的距離為,
∵A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線相切.
∴a=2,∴
∴橢圓的方程為;
(Ⅱ)假設(shè)存在,設(shè)直線l的方程為:y=k(x+1)代入橢圓的方程
消去y可得(3+4k2)x2+8k2x+(4k2﹣12)=0
設(shè)M(x1,y1),N(x2,y2),Q(x0,y0),
,
∵P為線段MN的中點(diǎn),





∵射線OP交橢圓于點(diǎn)Q


∴64k4+48k2=4(16k4+24k2+9)
∴48k2=96k2+36
∴﹣48k2=36
此方程無(wú)解,∴k不存在.

練習(xí)冊(cè)系列答案
  • 勝券在握打好基礎(chǔ)作業(yè)本系列答案
  • 暑假作業(yè)二十一世紀(jì)出版社系列答案
  • 陽(yáng)光作業(yè)暑假樂(lè)園系列答案
  • 浩鼎文化學(xué)年復(fù)習(xí)王系列答案
  • 假期好作業(yè)暨期末復(fù)習(xí)暑假系列答案
  • 浩鼎文化復(fù)習(xí)王期末總動(dòng)員系列答案
  • 暑假作業(yè)延邊教育出版社系列答案
  • 奪冠百分百新導(dǎo)學(xué)課時(shí)練系列答案
  • 快樂(lè)暑假天天練系列答案
  • 中考金卷預(yù)測(cè)卷系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源:江西省上饒市2012屆高三第一次高考模擬考試數(shù)學(xué)文科試題 題型:044

    已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線x+y+3=0相切.

    (Ⅰ)求橢圓的方程;

    (Ⅱ)設(shè)O為橢圓的中心,是否存在過(guò)F點(diǎn),斜率為k(k∈R,l≠0)且交橢圓于M、N兩點(diǎn)的直線,當(dāng)從O點(diǎn)引出射線經(jīng)過(guò)MN的中點(diǎn)P,交橢圓于點(diǎn)Q時(shí),有成立.如果存在,則求k的值;如果不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省部分重點(diǎn)中學(xué)高三(上)起點(diǎn)數(shù)學(xué)試卷(理科)(鐘祥一中命題)(解析版) 題型:解答題

    已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線相切.
    (1)求橢圓的方程;
    (2)設(shè)O為橢圓的中心,過(guò)F點(diǎn)作直線交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年天津一中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

    已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A,B,F(xiàn)三點(diǎn)確定的圓C恰好與直線相切.
    (Ⅰ)求橢圓的方程;
    (Ⅱ)是否存在過(guò)F作斜率為k(k≠0)的直線l交橢圓于M,N兩點(diǎn),P為線段MN的中點(diǎn),設(shè)O為橢圓中心,射線OP交橢圓于點(diǎn)Q,若,若存在求k的值,若不存在則說(shuō)明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2012年江西省上饒市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

    已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線相切.
    (Ⅰ)求橢圓的方程;
    (Ⅱ)設(shè)O為橢圓的中心,是否存在過(guò)F點(diǎn),斜率為k(k∈R,l≠0)且交橢圓于M、N兩點(diǎn)的直線,當(dāng)從O點(diǎn)引出射線經(jīng)過(guò)MN的中點(diǎn)P,交橢圓于點(diǎn)Q時(shí),有成立.如果存在,則求k的值;如果不存在,請(qǐng)說(shuō)明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案